Objet
L'observation expérimentale des écoulements incompressibles externes à grand nombre de Reynolds montre que la vorticité est confinée dans les couches limites qui se développent sur les parois solides, dans les sillages, les tourbillons d'apex et les tourbillons marginaux. Les approximations numériques particulaires basées sur la vorticité sont particulièrement adaptées pour traiter ce type de configuration. En un certain sens, les méthodes particulaires sont auto-adaptatives car elles concentrent naturellement les degrés de liberté de l'approximation numérique dans les zones où la vorticité est importante. Le caractère lagrangien de ces techniques en font des outils puissants pour traiter les écoulements à grand nombre de Reynolds. Cependant, les méthodes particulaires sont peu précises dans les couches limites, Il faut donc mettre en oeuvre dans ces zones les techniques habituelles basées sur la formulation eulerienne des équations de Navier-Stokes. Ces raisons nous ont conduit à développer au LIMSI une technique de décomposition de domaine qui combine les avantages des méthodes lagrangiennes et des méthodes euleriennes.
Contenu
La stratégie générale consiste à remplacer le problème de Navier-Stokes posé dans [[Omega]] par deux sous-problèmes posés respectivement dans [[Omega]]0 et [[Omega]]1. Le domaine [[Omega]]1 constitue un petit voisinage des parois solides (voir figure 1 pour une représentation schématique de la décomposition de domaine). Les deux sous-domaines sont supposés se recouvrir un peu. Dans [[Omega]]0 les équations sont formulées en vitesse-tourbillon et sont résolues par une méthode particulaire; dans [[Omega]]1 les équations sont formulées en vitesse-pression et sont résolue par une technique classique (éléments finis, différences finies, etc....). le couplage entre les sous-domaines est réalisé par un algorithme de marche en temps du type Schwarz. Ce type d'approche nécessite de mailler uniquement le sous-domaine [[Omega]]1, on réalise ainsi une économie importante de degrés de liberté.
Situation
Ces travaux ont été initiés par la thèse de W. Z. Shen (1990-1993) et se poursuivent actuellement dans le cadre de la thèse de H. Z. Lu (1993-1996) et s'inscrivent dans l'action du GDR couplage d'équations. Le travail réalisé depuis 1993 a consisté d'une part à coupler la formulation naturelle des équations de Navier--Stokes avec la formulation vitesse-tourbillon. La nouvelle technique de couplage ne présuppose pas a priori que la convection domine la diffusion dans la zone de recouvrement des sous-domaines. D'autre part la technique a été généralisée aux écoulements tridimensionnels. Sur la figure 2 on compare en dimension 2 la solution de couplage avec la solution calculée en monodomaine. Il s'agit du problème du cylindre démarré impulsivement à Re=3000. Pour les temps t=4 et t=6, la solution monodomaine est représentée dans la partie supérieure de la figure alors que la solution couplée est représentée dans la partie inférieure. Le domaine [[Omega]]1 est une couronne de largeur égale à un rayon du cylindre. Sur la figure 3 on représente l'évolution temporelle de la portance et de la traînée sur deux cylindres disposés en tandem dans un écoulement démarré impulsivement, Re=3000. La technique de couplage a été développée en dimension 3. On présente dans la figure 4 des champs de vitesse derrière une plaque plane de forme carrée placée perpendiculairement à un écoulement uniforme tridimensionnel, Re=100, (la plaque est définie par x=0, -1<y<1, -1<z<1).
Références
(1) Présentation dans le cadre d'une journée du GDR Couplage d'Équations, 29 janvier 1996.
(2) H. Z. Lu, "Simulation numérique des écoulements incompressibles externes par couplage Eulerien/Lagrangien." Thèse de Doctorat de l'Université de Paris XI, 1996
Retours
Groupe Dynamique des Fluides |
| Dpt Mécanique |
|
Sommaire
|
| Présentation |
|
---|